Клеточная мембрана. функции клеточной мембраны. строение клеточной мембраны

Разница между клеточной мембраной и клеточной стенкой

Присутствие

Клеточная мембрана: Клеточная мембрана является универсальной особенностью всех живых клеток.

Клеточная стена: Клеточная стенка присутствует в бактериях, археях, грибах и растительных клетках и отсутствует в клетках животных.

Состав

Клеточная мембрана: Клеточная мембрана представляет собой тонкую, тонкую структуру, шириной 5-10 нм.

Клеточная стена: Клеточная стенка представляет собой толстую жесткую структуру шириной 4-20 мкм.

наблюдение

Клеточная мембрана: Клеточную мембрану можно наблюдать под электронным микроскопом.

Клеточная стена: Клеточную стенку можно наблюдать под световым микроскопом.

Внешний слой

Клеточная мембрана: Клеточная мембрана является наружным слоем клеток животных.

Клеточная стена: Клеточная стенка является наружным слоем бактерий, архей, грибов и растительных клеток.

функция

Клеточная мембрана: Клеточная мембрана функционирует как защитное покрытие протоплазмы и поддерживает постоянную среду в протоплазме.

Клеточная стена: Клеточная стенка функционирует как защитное покрытие клеточной мембраны и поддерживает форму клетки.

Форма Клетки

Клеточная мембрана: Клеточная мембрана обеспечивает клетке круглую гибкую форму.

Клеточная стена: Клеточная стенка придает клетке фиксированную форму.

Состав

Клеточная мембрана: Клеточная мембрана состоит из липидов, белков и углеводов.

Клеточная стена: Клеточная стенка состоит из пептидогликана в бактериях, хитина в грибах и целлюлозы в растениях.

водопроницаемость

Клеточная мембрана: Клеточная мембрана избирательно проницаема, что позволяет выбранным молекулам перемещаться по ней.

Клеточная стена: Клеточная стенка полностью проницаема для макромолекул.

Статус жизни

Клеточная мембрана: Клеточная мембрана жива и метаболически активна.

Клеточная стена: Клеточная стенка неживая и метаболически неактивна.

Рецепторы

Клеточная мембрана: Рецепторы на клеточной мембране позволяют клетке получать сигналы от внешней среды.

Клеточная стена: В клеточной стенке отсутствуют рецепторы.

Жгутики и пили

Клеточная мембрана: Клеточная мембрана порождает жгутики и пили, которые помогают движению и прикреплению клетки соответственно.

Клеточная стена: Клеточная стенка облегчает жгутики и пили через небольшие отверстия.

толщина

Клеточная мембрана: Клеточная мембрана сохраняет одинаковую толщину на протяжении всей жизни.

Клеточная стена: Клеточная стенка со временем увеличивает свою толщину и занимает всю клетку, вызывая гибель клетки, особенно в растительных клетках.

Требования к питанию

Клеточная мембрана: Клеточная мембрана требует питания от клетки, и она сокращается в условиях засухи.

Клеточная стена: Поскольку клеточная стенка представляет собой простой запас веществ, она не требует питания от клетки.

Заключение

Клеточная мембрана и клеточная стенка могут быть идентифицированы как внешние слои клеток. Клеточная стенка является наружным слоем большинства клеток, включая растения, бактерии и грибы. Клеточная мембрана образует внешний слой клеток животных, поскольку они не обладают клеточной стенкой. Клеточная стенка полностью проницаема для веществ и не содержит рецепторов. Клеточная мембрана полупроницаема для веществ, поддерживая постоянную среду в протоплазме. Клеточная мембрана также содержит рецепторы, позволяющие клеткам реагировать на изменения внешней среды. Правильная форма может поддерживаться в клетке, а не клеточной мембраной, а клеточной стенкой. Основным отличием клеточной мембраны от клеточной стенки является их универсальность как особенность конкретной клетки.

Ссылка:1.

История исследования

Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.

В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.

В 1950 году с появлением электронного микроскопа теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.

В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения термодинамики клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»

И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.

Рисунок клеточной мембраны.

Проницаемость клеточных мембран

Проницаемость – это важнейшая функция защитного слоя клетки. Благодаря ей происходит движение внутрь и извне клетки многих метаболитов. Постоянно поддерживается форма клетки, баланс в ней веществ, осуществляется проведение нервного импульса, поддерживается жизнеспособность клетки.

Низкомолекулярные жирорастворимые вещества, такие как глицерин, спирты, мочевина могут беспрепятственно самостоятельно проникать через мембранную оболочку. Это лишь малая часть переносимых веществ, называется простая диффузия. Сложное перемещение называется транслокация и невозможно без дополнительных транспортных систем.

Есть предположение, что системы-переносчики состоят из белков или липопротеидов, а также ряд других компонентов. Переносчик или система сначала связывает переносимое вещество, а потом доставляет его через мембрану внутрь клетки. Выделяют также неподвижных переносчиков, которые не перемещаются внутри мембранной оболочки, а являются своеобразным туннелем или каналом. Выделяют также и вторичную транслокацию – переносчик осуществляет связь с переносимым веществом путем невалентных взаимодействий. Выделяют 3 вида:

  1. Облегченная диффузия (унипорт) – механизм переноса не зависит от переноса веществ в клетку или из нее. Этим способом переносится глюкоза в эритроциты.
  2. Котранспоорт (симпорт) – совместный транспорт двух или более веществ в одном направлении.
  3. Противотранспорт – доставка веществ в одном направлении соотносится с движением других частиц в противоположном направлении. Для этого вида транспорта требуется много энергии, которая образуется за счет сопряжения вторичной транслокации с ферментативными реакциями разрыва или образования химических связей.

Надмембранные комплексы клеток

У клеток животных и человека есть тонкий поверхностный пласт – гликокаликс (от греч. глицис – сладкий и лат. callum – толстая кожа). Он толщиной – несколько десятков наннометров. Состоит из гликопротеидов (соединений белков с углеводами) и частично гликолипидов (соединений липидов с углеводами). Гликокаликс обеспечивает непосредственную связь клеток с внешней средой, между клетками. Клетка воспринимает раздражения через гликокаликс. Не выполняет опорной функции. В гликокаликсе благодаря наличию ферментов может происходить внеклеточное пищеварение. Гликокаликс состоит из гликопротеидов (соединения углеводов с белками) и гликолипидов (соединения углеводов с липидами).

У клеток грибов и растений – клеточные стенки (оболочки). В клеточных стенках растений содержится целлюлоза. Нерастворимые в воде волоконца целлюлозы собраны в пучочки и образуют каркас, углубленный в основу – матрикс. Матрикс содержит преимущественно полисахариды. В состав клеточной стенки растений могут входить и другие вещества: липиды, белки, неорганические соединения (двооксид кремния, соли кальция и т. п.). Клеточные стенки способны древеснеть – промежутки между волоконцами целлюлозы заполняются особым органическим соединением – лигнином. Все соединения клеточной стенки синтезируются в клетке. Через клеточные стенки растений происходит транспорт воды и определенных соединений. Это можно наблюдать в явлениях плазмолиза и деплазмолиза. В растворе, концентрация солей которого выше концентрации солей в цитоплазме, вода выходит из клетки. Пристеночный слой цитоплазмы отделяется от клеточной стенки – явление плазмолиза. В растворе, концентрация которого будет ниже концентрации солей в цитоплазме, – будет наблюдаться обратный процесс – явление деплазмолиза, при котором вода будет поступать в клетку и внутриклеточное давление будет возрастать.

В клеточных стенках грибов содержится хитин, а также разнообразные полисахариды (целлюлоза, гликоген и т. п.). В состав клеточных стенок некоторых грибов могут входить темные пигменты (меланины), пептиды, растворимые сахара, аминокислоты, фосфаты и т. п.

Структура клеточной мембраны

Плазматическая мембрана в основном состоит из смеси белков и липидов. В зависимости от расположения и роли мембраны в организме, липиды могут составлять от 20 до 80 процентов мембраны, а остальная часть приходится на белки. В то время как липиды помогают придать мембране гибкость, белки контролируют и поддерживают химический состав клетки, а также помогают в переносе молекул сквозь мембрану.

Липиды мембран

Фосфолипиды являются основным компонентом плазматических мембран. Они образуют липидный бислой, в котором гидрофильные (притянутые к воде) участки «головы» спонтанно организуются, чтобы противостоять водному цитозолю и внеклеточной жидкости, тогда как гидрофобные (отталкиваемые водой) участки «хвоста» обращены от цитозоля и внеклеточной жидкости. Липидный бислой является полупроницаемым, позволяя только некоторым молекулам диффундировать через мембрану.

Холестерин является еще одним липидным компонентом мембран животных клеток. Молекулы холестерина избирательно диспергированы между мембранными фосфолипидами. Это помогает сохранить жесткость клеточных мембран, предотвращая слишком плотное расположение фосфолипидов. Холестерин отсутствует в мембранах растительных клеток .

Гликолипиды расположены с наружной поверхности клеточных мембран и соединяются с ними углеводной цепью. Они помогают клетке распознавать другие клетки организма.

Белки мембран

Клеточная мембрана содержит два типа ассоциированных белков. Белки периферической мембраны являются внешними и связаны с ней путем взаимодействия с другими белками. Интегральные мембранные белки вводятся в мембрану, и большинство проходит сквозь нее. Части этих трансмембранных белков расположены по обе ее стороны.

Белки плазматической мембраны имеют ряд различных функций. Структурные белки обеспечивают поддержку и форму клеток. Белки рецептора мембраны помогают клеткам контактировать со своей внешней средой с помощью гормонов, нейротрансмиттеров и других сигнальных молекул. Транспортные белки, такие как глобулярные белки, переносят молекулы через клеточные мембраны посредством облегченной диффузии. Гликопротеины имеют прикрепленную к ним углеводную цепь. Они встроены в клеточную мембрану, помогая в обмене и переносе молекул.

Мембраны органелл

Некоторые клеточные органеллы также окружены защитными мембранами. Ядро, эндоплазматический ретикулум, вакуоль, лизосома и аппарат Гольджи являются примерами окруженных мембраной органелл. Митохондрии и хлоропласты покрыты двойной мембраной. Мембраны различных органелл различаются по молекулярному составу и хорошо подходят для выполнения своей роли. Они важны для нескольких жизненно важных функций клеток, включая синтез белка, производство липидов и клеточное дыхание.

Мне нравитсяНе нравится

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.

Транспорт через клеточную мембрану

У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция
Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая — Накопление и трансформация энергии;
— световые реакции фотосинтеза в хлоропластах;
— Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.

Что такое клеточная мембрана

Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды. Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы. Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.

Структура клеточной мембраны

Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами. Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой. Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.

Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.

Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1. 

Рисунок 1: Подробная схема клеточной мембраны

Состав клеточной мембраны

Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.

Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.

Функция клеточной мембраны

Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.

Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии. Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом. Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов;
  • гликолипидов;
  • холестерола;
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение;
  • каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
  • холестерол придает мембране упругость и жесткость;
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector