Биология. 11 класс
Содержание:
- Хромосома: определение и описание
- Наследственные болезни
- РНК (рибонуклеиновая кислота)
- ЧТО ТАКОЕ ДНК?
- ЧТО ЗАПИСАНО В ДНК?
- КАК КЛЕТКИ ПОНИМАЮТ ИНСТРУКЦИИ ДНК?
- КАК ИНСТРУКЦИЯ ПОПАДАЕТ В КАЖДУЮ КЛЕТКУ?
- Синтез РНК
- Уровни структурной организации
- Путь от цепочки к хромосоме
- Функции ДНК и аминокислот
- Дезоксирибонуклеиновая кислота (ДНК): строение
- Использование в медицине
- Расшифровка ДНК
- Регуляторная РНК
- Как появилась жизнь на Земле?
- Транскрипция — первый этап биосинтеза белка
- Функции ДНК
- История
- История открытия ДНК
- Заключение
Хромосома: определение и описание
Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.
Чем отличаются хромосомы друг от друга
На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:
- В перекрестии хромосомы, пересекаясь точно посередине друг друга.
- Там же, но пересекаясь не точно.
Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.
Науке известных хромосомы трёх основных форм:
- Х хромосома, которая встречается у женщин и у мужчин.
- Y хромосома, встречающаяся только у мужчин.
- В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.
Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.
Наследственные болезни
Генетический код это очень многофункциональная и противоречивая структура. С одной стороны он должен хранить информацию в неизменном эталонном виде, и эта функция проявляется возможностью ДНК восстанавливать искусственные повреждения в следующем поколении. С другой же стороны, геном может быть либо поврежден, либо измениться сам, что называют мутацией.
Мутации естественное свойство генов, и последствия этих мутация бывают, как отрицательные, так и положительные. Хоть мутации и называют поломками, но это определение спорно. Некоторые мутации в чём-то ослабляют организм – именно эти мутации и ищут во время тестирования на непереносимость пищевых продуктов.
Такие мутации создают повышенные риски возникновения, какого либо заболевания при соблюдении некоторых факторов. Соответственно, если исключить эти факторы из своей жизни, то с ними будут исключены и вероятности возникновения заболевания.
РНК (рибонуклеиновая кислота)
РНК (рибонуклеиновая кислота), так же как и ДНК, относится к нуклеиновым кислотам. Молекулы-полимеры РНК намного меньше, чем у ДНК. Однако в зависимости от типа РНК количество входящих в них нуклеотидов-мономеров различается.
В состав нуклеотида РНК в качестве сахара входит рибоза, в качестве азотистого основания — аденит, гуанин, урацил, цитозин.
Урацил по строению и химическим свойствам близок к тимину, который обычен для ДНК. В зрелых молекулах РНК многие азотистые основания модифицированы, поэтому в реальности разновидностей азотистых оснований в составе РНК намного больше.
Рибоза в отличие от дезоксирибозы имеет дополнительную -ОН-группу (гидроксильную). Это обстоятельство позволяет РНК легче вступать в химические реакции.
Главной функцией РНК в клетках живых организмов можно назвать реализацию генетической информации.
Именно благодаря разным типам рибонуклеиновой кислоты генетический код считывается (транскрибируется) с ДНК, после чего на его основе синтезируются полипептиды (происходит трансляция). Итак, если ДНК в основном отвечает за хранение и передачу из поколения в поколение генетической информации (основной процесс – репликация), то РНК реализует эту информацию (процессы транскрипции и трансляции).
При этом транскрипция происходит на ДНК, так что этот процесс относится к обоим типам нуклеиновых кислот и тогда с этой точки зрения можно сказать, что и ДНК отвечает за реализацию генетической информации.
При более подробном рассмотрении функции РНК намного разнообразнее. Ряд молекул РНК выполняют структурную, каталитическую и другие функции.
Существует так называемая гипотеза РНК-мира, согласно которой вначале в живой природе в качестве носителя генетической информации выступали только молекулы РНК, при этом другие молекулы РНК катализировали различные реакции.
Данная гипотеза подтверждена рядом опытов, показывающих возможную эволюцию РНК. На это указывает и то, что ряд вирусов в качестве нуклеиновой кислоты, хранящей генетическую информацию, имеют молекулу РНК.
Согласно гипотезе РНК-мира ДНК появилась позже в процессе естественного отбора как более устойчивая молекула, что важно для хранения генетической информации. Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная
Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная.
Обозначаются они соответственно иРНК (или мРНК), рРНК, тРНК.
ЧТО ТАКОЕ ДНК?
В каждой клетке твоего тела есть чертеж, по которому организм сам себя строит. Этот чертеж хранится в молекулах ДНК. Ты еще не родился и находишься внутри мамы, а в твоей ДНК уже записано, как станут работать твои органы, какая у тебя будет внешность и даже каковы твои шансы чем-то заболеть. У этой инструкции очень долгая история. Ты получил ее от своих родителей (половину от мамы, половину от папы), а они — от своих. Ты тоже передашь такой чертеж своим детям. И так часть той программы, по которой сейчас работает твой организм, попадет в будущее — к твоим потомкам. Но что же это за инструкция и как наше тело ее читает?
ЧТО ЗАПИСАНО В ДНК?
Молекула ДНК — это две очень длинные нити, закрученные в спираль. Они состоят из четырех повторяющихся химических соединений. У этих соединений громоздкие химические формулы, и для удобства биологи договорились обозначать их просто буквами: A, T, Г и Ц. Поэтому и говорят, что вся информация в ДНК «записана буквами». Последовательностью этих букв определяются разные признаки в организме. Например, при одной последовательности глаза будут голубыми, а при другой — карими. Из-за разницы в буквах кто-то лучше распознает фальшивые ноты, а кто-то хуже; на кого-то лекарства действуют сразу, а кому-то нужно подождать.
КАК КЛЕТКИ ПОНИМАЮТ ИНСТРУКЦИИ ДНК?
Задача каждой клетки организма — синтезировать (производить) определенные белки. Клетки поджелудочной железы, например, производят белки, помогающие пищеварению. А в клетках внутренней оболочки глаза под действием света образуются вещества, благодаря которым у нас цветное зрение. Но как клетка понимает, какие именно вещества ей производить? Ответ она находит в ДНК. Последовательность букв на небольшом участке ДНК — это и есть рецепт нужного белка. С помощью сложной молекулярной машины клетка читает чертеж-инструкцию и переписывает буквы на более мелкие молекулы. А эти молекулы уже доставляют инструкцию на специальный биохимический завод внутри клетки, где и производятся белки.
КАК ИНСТРУКЦИЯ ПОПАДАЕТ В КАЖДУЮ КЛЕТКУ?
Каждой клетке нужна инструкция. Поэтому всякий раз, когда клетки организма делятся, ДНК копируется. Для этого необходимо сначала правильно раскрутить и распутать спираль ДНК. А потом еще один биохимический завод на каждой половинке ДНК достраивает из букв A, T, Г и Ц вторую половинку спирали. Буква А всегда соединяется с Т, буква Г — с Ц, поэтому копирование получается точным.
Синтез РНК
Нуклеотиды (из которых формируются гены) подразделяются на 4 образующих элемента: аденин, тимин, гуанин и цитозин, которые содержат остатки фосфора, пептозы и азотистого основания. В цепочках ДНК эти нуклеотиды располагаются параллельно друг другу строгими парами: аденин только с тимином, а гуанин только с цитозином.
Необходимо подчеркнуть, что молекула дезоксирибонуклеиновой кислоты ни целиком, ни частично не может (или не должна) покинуть пределов ядра. РНК выступает в роли копии участка цепи генома, которая способна покинуть ядро, попасть в саму клетку и воздействовать на идущие в ней процессы. И происходит это удивительным образом:
- Спираль генов раскручивается на одном из своих участков и формирует развернутые нити обоих цепочек генов.
- К развернутому участку подходит специальный фермент-строитель и поверх этого участка синтезирует копию.
- У копии есть одно ключевое отличие от оригинальной структуры нуклеотидов: тимин во всех парах ней заменён на урацил. Это и позволяет ей покидать пространство ядра клетки.
Уровни структурной организации
Изогнутая как спираль полинуклеотидная цепь – это первичная структура, которая имеет определенный качественный и количественный набор мононуклеотидов, связанных 3’,5’-фосфодиэфирной связью. Таким образом, каждая из цепей имеет 3’-конец (дезоксирибоза) и 5’-конец (фосфатный). Участки, которые содержат в себе генетическую информацию, названы структурными генами.
Двухспиральная молекула – это вторичная структура. Причем ее полинуклеотидные цепи антипараллельны и связываются водородными связями между комплементарными основаниями цепей. Установлено, что в каждом витке этой спирали содержится 10 нуклеотидных остатков, длина ее равняется 3,4 нм. Эту структуру поддерживают также Ван-дер-Ваальсовы силы взаимодействия, которые наблюдаются между основаниями одной цепи, включающие отталкивающие и притягивающие компоненты. Эти силы объясняются взаимодействием электронов в соседних атомах. Электростатическое взаимодействие также стабилизирует вторичную структуру. Оно возникает между заряженными положительно молекулами гистонов и заряженной отрицательно нитью ДНК.
Третичная структура – это намотка цепей ДНК на гистоны или суперспирализация. Описано пять видов гистонов: Н1, Н2А, Н2В, Н3, Н4.
Укладка нуклеосом в хроматин – это четвертичная структура, поэтому молекула ДНК, имеющая длину несколько сантиметров, может складываться до 5 нм.
Путь от цепочки к хромосоме
У всех живых организмов клеточная структура и эти клетки содержат внутри себя ядро – такие клетки называются эукариоты. У бактерий и архей (древних одноклеточных организмов) такого ядра нет. Так же ядра в клетке нет у вирусов и вироидов ( инфекционных агентов, вызывающих болезни растений), но считать ли их живыми до сих пор вопрос дискуссионный.
Ядра клеток содержат в себе структуры, хранящие наследственную информацию – хромосомы. А вот сама хромосома и содержит внутри себя спиральную молекулу дезоксирибонуклеиновой кислоты, которая осуществляет функцию хранения наследственной информации.
Функции ДНК и аминокислот
Основные функции ДНК
К функциям ДНК относят:
- Вхождение в состав хромосом.
- Хранение наследственной информации обо всех признаках организма и первичной структуре белков. Первичную структуру белков называют линейной, поскольку она состоит из соединенных друг с другом пептидной связью аминокислот.
- Способность к репликации (удвоение). Процесс удвоения осуществляется в интерфазе до процесса деления. Хромосомы состоят из двух хроматид – в будущем они станут дочерними хромосомами. Процесс удвоения важен потому, что после эти дочерние клетки получат наследственную информацию в одинаковом объеме.
Свойства и функции аминокислот
Есть множество азотосодержащих соединений, обладающих двойственной функций. Кроме нуклеиновых кислот нужно выделить аминокислоты.
Определение 4
Аминокислоты – органические соединения, в состав которых входят аминогруппы (- NH2) и карбоксильные группы (- COOH).
Несмотря на то, что в клетках и живых тканях можно встретить больше 300 различных аминокислот, всего 20 из них являются звеньями в процессе строительства пептидов и белков, которые создаются на ДНК-матрице. Такие аминокислоты входят в состав ДНК и называются белковыми.
В последовательности нуклеотидов ДНК или соответствующего гена закодирована последовательность размещения вышеупомянутых аминокислот внутри белка. Другие аминокислоты могут встречаться как в виде свободных молекул, так и в связанном виде.
Есть аминокислоты, которые можно найти только в определенных организмах, а некоторые – только в одном организме. Почти все растения и микроорганизмы, в отличие от животных и людей, синтезируют нужные аминокислоты. Люди и животные не могут синтезировать незаменимые аминокислоты – они получают их только в процессе приема пищи.
Аминокислоты крайне важны для организма, поскольку принимают участие в обмене белков и углеводов, образовании важных органических соединений
В качестве примера – пуриновые и пиримидиновые основания, которые являются важной частью аминокислот
Замечание 1
Аминокислоты можно найти в составе гормонов, токсинов, алкалоидов, антибиотиков, пигментов и др. А еще очень много аминокислот выступает посредниками при передаче нервных импульсов.
Классификация аминокислот
Есть несколько признаков, по которым классифицируют все аминокислоты:
- взаимное расположения аминогрупп и карбоксильных групп;
- количество функциональных групп. Здесь выделяют кислые, нейтральные и основные аминокислоты;
- характер углеводного радикала. В этом случае можно выделить алифатические, ароматические, гетероциклические аминокислоты.
Названия аминокислот, исходя из систематической номенклатуры, получаются, если к названию соответствующей кислоты добавляется приставка амино- и указывается место размещения аминогруппы по отношению к карбоксильной группе.
Есть еще одни вариант называния аминокислоты: обычное название карбоновой кислоты озвучивается вместе с приставкой амино-, а после обозначается буквой греческого алфавита.
Среди наиболее важных аминокислот стоит назвать валин, глицин, лейцин, аланин.
Подводя итоги, отметим, что аминокислоты – это кристаллические вещества, обладающие высокой температурой плавления. Они практически ничем не отличаются от индивидуальных аминокислот – по этой причине они не свойственны многим живым организмам.
Замечание 2
Многие аминокислоты сладкие на вкус.
Важно обозначить, что аминокислоты растворяются в воде, а в органических растворителях – нет. Учитывая этот факт, можно сказать, что аминокислоты похожи на неорганические соединения
Всё ещё сложно?
Наши эксперты помогут разобраться
Все услуги
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Дезоксирибонуклеиновая кислота (ДНК): строение
Роль хранителя наследственной информации у всех клеток — животных и растительных — принадлежит ДНК.
Схема строения ДНК изображена на рисунке 74. Молекула ДНК представляет собой две спирально закрученные одна вокруг другой нити.
Ширина такой двойной спирали ДНК невелика, около 2 нм. Длина же ее в десятки тысяч раз больше — она достигает сотен тысяч нанометров.
Между тем самые крупные белковые молекулы в развернутом виде достигают в длину не более 100 — 200 нм.
Таким образом, вдоль молекулы ДНК могут быть уложены одна за другой тысячи белковых молекул.
Молекулярная масса ДНК соответственно исключительно велика — она достигает десятков и даже сотен миллионов.
Обратимся к структуре ДНК. Каждая нить ДНК представляет собой полимер, мономерами которого являются нуклеотиды.
Нуклеотид — это химическое соединение остатков трех веществ: азотистого основания, углевода (моносахарида — дезоксирибозы) и фосфорной кислоты.
ДНК всего органического мира образованы соединением четырех видов нуклеотидов. Их структуры приведены на рисунке рисунке 75.
Как видно, у всех четырех нуклеотидов углевод и фосфорная кислота одинаковы.
Нуклеотиды отличаются только по азотистым основаниям, в соответствии с которыми их называют; нуклеотид с азотистым основанием аденин (сокращенно А), нуклеотид с гуанином (Г), нуклеотид с тимином (Т) и нуклеотид с цитозином (Ц).
По размерам А равен Г, а Т равен Ц; размеры А и Г несколько больше, чем Т и Ц.
Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и фосфорную кислоту соседнего. Они соединяются прочной ковалентной связью — рисунок 76.
Итак, каждая нить ДНК представляет собой полинуклеотид. Это длинная цепь, в которой в строго определенном порядке расположены нуклеотиды.
Рассмотрим теперь, как располагаются относительно друг друга нити ДНК, когда образуется двойная спираль, и какие силы удерживают их рядом.
Представление об этом дает рисунок рисунок 77, на котором изображен небольшой участок двойной спирали.
Как видно, азотистые основания одной цепи «стыкуются» с азотистыми основаниями другой. Основания подходят друг к другу настолько близко, что между ними возникают водородные связи.
В расположении стыкующихся нуклеотидов имеется важная закономерность, а именно: против А одной цепи всегда оказывается Т на другой цепи, а против Г одной цепи — всегда Ц.
Оказывается, что только при таком сочетании нуклеотидов обеспечивается, во-первых, одинаковое по всей длине двойной спирали расстояние между цепями и, во-вторых, образование между противолежащими основаниями максимального числа водородных связей (три водородные связи между Г и Ц и две водородные связи между А и Т).
В каждом из этих сочетаний оба нуклеотида как бы дополняют друг друга. Слово «дополнение» на латинском языке «комплемент». Принято поэтому говорить, что Г является комплементарным Ц, а Т комплементарен А.
Если на каком-нибудь участке одной цепи ДНК один за другим следуют нуклеотиды А, Г, Ц, Т, А, Ц, Ц, то на противолежащем участке другой цепи окажутся комплементарные им Т, Ц, Г, А, Т, Г, Г.
Таким образом, если известен порядок следования нуклеотидов в одной цепи, то по принципу комплементарности сразу же выясняется порядок нуклеотидов в другой цепи.
Большое число водородных связей обеспечивает прочное соединение нитей ДНК, что придает молекуле устойчивость и в то же время сохраняет ее подвижность: под влиянием фермента дезоксирибонуклеазы она легко раскручивается.
ДНК содержится в ядре клетки, а также в митохондриях и хлоропластах.
В ядре ДНК входит в состав хромосом, где она находится в соединении с белками.
Использование в медицине
Открытие того из чего состоит молекула ДНК дало толчок к развитию множества новых услуг и направлений экспериментальной медицины. Благодаря новым технологиям, которые стали возможны вследствие исследования генома, сегодня почти любому доступны:
- Диагностика заболеваний на сверхранней стадии. Анализ позволяет выявить инфекцию, даже если заболевание находится в инкубационном периоде, и нет ни каких симптомов.
- Определение отцовства. Так же материнства и прочих родственных связей. При этом различные тесты можно проводить, как с участием потенциальных родителей, так и без них.
- Тестирование на непереносимость пищевых продуктов. Какие вещества хорошо усваиваются организмом, какие плохо или не усваиваются вовсе, что вызывает аллергические реакции – всё это расскажут результаты индивидуального исследования.
- Анализ этнической принадлежности – с какими народами перекрещивались далекие предки, и какие национальности формируют вас сегодня.
- Исследование на наличие наследственных заболеваний, в том числе и спящих, которые передаются через поколение и более.
И это только самые востребованные тесты, имеющие коммерческий интерес и полезные для простого обывателя. Если говорить о перспективах лабораторных научных исследований, то многие учёные-генетики не без энтузиазма готовятся совершить самое великое открытие за всю человеческую историю — победить болезни и саму смерть.
Расшифровка ДНК
Расшифровка ДНК клетки это большое и дорогостоящее исследование всех известных человеческих генов. А после завершения исследовательского проекта «Геном человека» это порядка 25 тысяч генов. И хоть расшифровка значительно подешевела, и за прошедший десяток лет упала со ста тысяч долларов до двух тысяч на одного человека, далеко не каждому это покажется приемлемой ценой.
Для удешевления медицинских и генетических исследований всю расшифровку генома разделили тематически. Так стали появляться различные тестирования, по этому принципу они и планируются – выборка генов отвечающих за интересующие тематику исследования процессы.
Регуляторная РНК
Самыми ранними известными регуляторами экспрессии генов были белки, известные как репрессоры и активаторы — регуляторы со специфическими короткими сайтами связывания в областях энхансеров рядом с регулируемыми генами. Более поздние исследования показали, что РНК также регулируют гены. Существует несколько видов РНК-зависимых процессов в эукариотах, регулирующих экспрессию генов в различных точках, таких как гены, репрессирующие РНКи, посттранскрипционно , длинные некодирующие РНК , блокирующие эпигенетические блоки хроматина , и энхансерные РНК, индуцирующие повышенную экспрессию генов. Также было показано, что бактерии и археи используют системы регуляторных РНК, такие как бактериальные малые РНК и CRISPR . Файер и Мелло были удостоены Нобелевской премии по физиологии и медицине 2006 года за открытие микроРНК (миРНК), специфических коротких молекул РНК, которые могут образовывать пары оснований с мРНК.
РНК-интерференция миРНК
Уровни посттранскрипционной экспрессии многих генов можно контролировать с помощью РНК-интерференции , при которой миРНК , специфические короткие молекулы РНК, соединяются с участками мРНК и нацелены на них для деградации. Этот основанный на антисмысловой основе процесс включает этапы, на которых сначала обрабатывается РНК, чтобы она могла образовывать пару оснований с областью ее мРНК-мишени. Как только происходит спаривание оснований, другие белки направляют мРНК на разрушение нуклеазами .
Длинные некодирующие РНК
Затем с регуляцией были связаны Xist и другие длинные некодирующие РНК, связанные с инактивацией Х-хромосомы . Их роль, поначалу загадочная, как было показано Джинни Т. Ли и другими , заключалась в подавлении блоков хроматина за счет рекрутирования комплекса Polycomb, так что информационная РНК не могла быть транскрибирована с них. Дополнительные днРНК, в настоящее время определяемые как РНК из более чем 200 пар оснований, которые, по-видимому, не обладают кодирующим потенциалом, были обнаружены связанными с регуляцией плюрипотентности стволовых клеток и клеточного деления .
Энхансерные РНК
Третья основная группа регуляторных РНК называется энхансерными РНК . В настоящее время неясно, являются ли они уникальной категорией РНК различной длины или представляют собой отдельное подмножество lncRNAs. В любом случае они транскрибируются с энхансеров , которые представляют собой известные регуляторные сайты в ДНК рядом с регулируемыми ими генами. Они активируют транскрипцию гена (ов) под контролем энхансера, с которого они транскрибируются.
Регуляторная РНК у прокариот
Сначала считалось, что регуляторная РНК является эукариотическим феноменом, частью объяснения того, почему у высших организмов было обнаружено гораздо больше транскрипции, чем предполагалось. Но как только исследователи начали искать возможные регуляторы РНК в бактериях, они обнаружили и там, что называется малая РНК (мРНК). В настоящее время в поддержку теории Мира РНК обсуждается повсеместная природа систем регуляции РНК генов . Бактериальные малые РНК обычно действуют посредством антисмыслового спаривания с мРНК, подавляя ее трансляцию, либо влияя на стабильность, либо влияя на цис-связывающую способность. Также были обнаружены рибовключатели . Это цис-действующие регуляторные последовательности РНК, действующие аллостерически . Они меняют форму, когда связывают метаболиты, так что они приобретают или теряют способность связывать хроматин для регулирования экспрессии генов.
У архей также есть системы регуляторных РНК. Система CRISPR, которая недавно использовалась для редактирования ДНК in situ , действует через регуляторные РНК у архей и бактерий, обеспечивая защиту от вирусных захватчиков.
Как появилась жизнь на Земле?
Ученые пытаются выяснить как появилась жизнь на Земле начиная с 1950-х годов. Именно тогда американские исследователи Стэнли Миллер и Гарольд Юри провели эпохальный эксперимент. Пара имитировала воздействие молнии в атмосфере и океане ранней Земли, вызывая электрические разряды в колбах, содержащих водород, воду, аммиак и метан. Хотя их эксперимент произвел органические молекулы, жизненно важные для биохимии, в течение десятилетий другие исследователи обсуждали правдоподобность условий проведенного эксперимента.
Появление жизни на Земле – один из главных вопросов современной науки
Тем не менее, работа Миллера и Юри показала, что получить важные вещества – например, аминокислоты, которые соединяются для формирования белков, выполняющих множество функций в живых клетках – довольно просто. Особое значение для исследований происхождения жизни имеет тот факт, что белки могут выступать в качестве катализаторов, усиливая и ускоряя другие химические реакции, которые в противном случае были бы слишком медленными или неэффективными. И все же, белки – не единственные возможные катализаторы возникновения жизни на Земле.
В работе, которая в конечном итоге принесла ученым Нобелевскую премию по химии 1989 года, молекулярный биолог Сидней Альтман и биохимик Томас Чех обнаружили, что РНК – долгое время считавшаяся лишь промежуточным носителем генетической информации, подчиненной ДНК — может также вести себя как катализатор. Гипотеза РНК предполагает, что такие молекулы могут самовоспроизводиться, обеспечивая раннюю эволюцию до появления ДНК и белков. Однако идея «мира РНК» была чрезмерно восторженной реакцией на блестящее открытие.
Как пишет Scientific American, чтобы создать длинные цепочки ДНК, основания сначала соединяются с «позвоночником» молекул сахара. Эти комбинации образуют нуклеозиды: дезоксирибонуклеотиды в ДНК и рибонуклеозиды в РНК, которые образуют единую спираль. Нуклеозиды — это гликозиламины, содержащие азотистое основание, связанное с сахаром. Нуклеозиды используют не столовый сахар или сахарозу, а скорее рибозу в РНК и дезоксирибозу в ДНК. Различие между двумя типами сахара очень незначительно: всего один атом кислорода и один атом водорода. Однако этого различия достаточно, чтобы ДНК и РНК имели различные биологические роли.
Атомы, из которых состоит все живое на планете, появились в результате взрыва сверхновых звезд
В ходе работы ученые смешали некоторые промежуточные молекулы из предыдущих исследований с солями – нитритом натрия и хлоридом магния, которые могли быть распространены на первобытной Земле, а затем подвергли их кислотным условиям и теплу соответственно. С помощью этих шагов исследователи нашли два возможных способа добавить четвертое основание – менее распространенный нуклеозид инозин. Этого оказалось достаточно, чтобы создать четырехбуквенный генетический алфавит, в котором каждое основание в молекулярной цепочке взаимодействует исключительно с одной из трех других букв во второй цепочке – так работают современные РНК и ДНК. Но в эксперименте две буквы пришли из РНК, а две – из ДНК.
Как полагает Сазерленд, люди склонны думать, что РНК предшествует ДНК, а затем каким-то образом захватывается ею. Это предполагает, что жизнь могла возникнуть из гибрида РНК-ДНК, который затем мог дать начало двум отдельным молекулам. Однако команда Сазерленда еще не собрала отдельные нуклеозиды и рибонуклеозиды в более длинные цепочки
Это важно, потому что демонстрация того, что гибридные нити действительно могут образовываться и связываться с партнерской нитью, имеет решающее значение для понимания зарождения жизни на Земле. Что ж, пожелаем исследователям удачи и будем ждать продолжения исследований! Как думаете, как и почему зародилась жизнь на нашей планете? Ответ будем ждать здесь!
Транскрипция — первый этап биосинтеза белка
Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК.
Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.
Специальный фермент находит ген и раскручивает участок двойной спирали ДНК. Фермент перемещается вдоль цепи ДНК и строит цепь информационной РНК в соответствии с принципом комплементарности. По мере движения фермента растущая цепь РНК матрицы отходит от молекулы, а двойная цепь ДНК восстанавливается. Когда фермент достигает конца копирования участка, то есть доходит до участка, называемого стоп-кодоном, молекула РНК отделяется от матрицы, то есть от молекулы ДНК. Таким образом, транскрипция — это первый этап биосинтеза белка. На этом этапе происходит считывание информации путём синтеза информационной РНК.
Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.
После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК. На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков). После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.
Транскрипция пошагово:
- РНК полимераза садится на 3’ конец транскрибируемой цепи ДНК.
- Начинается элонгация — полимераза «скользит» по ДНК в сторону 5’ конца и строит цепь иРНК, комплементарную ДНК.
- Полимераза доходит до конца гена, «слетает» с ДНК и отпускает иРНК.
- После этого происходит процесс созревания РНК — процессинг.
Проверьте себя: помните ли вы принцип комплементарности? Молекула ДНК состоит из двух спирально закрученных цепей. Цепи в молекуле ДНК противоположно направлены. Остов цепей ДНК образован сахарофосфатными остатками, а азотистые основания одной цепи располагаются в строго определённом порядке напротив азотистых оснований другой — это и есть правило комплементарности.
Функции ДНК
Основными функциями ДНК являются:
- Хранение наследственной информации. Последовательность аминокислот, находящихся в молекуле белка, определяется порядком, в котором расположены нуклеотидные остатки в молекуле ДНК. Также в ней зашифрована вся информация о свойствах и признаках организма.
- ДНК способна передавать наследственную информацию следующему поколению. Это возможно из-за способности к репликации – самоудвоению. ДНК способна распадаться на две комплементарные цепочки, и на каждой из них (в соответствии с принципом комплементарности) восстанавливается исходная последовательность нуклеотидов.
- При помощи ДНК происходит биосинтез белков, ферментов и гормонов.
История
Открытие дезоксирибонуклеиновой кислоты произошло в 1869 году. И принадлежит открытие Иоганну Фридриху Мишеру. Он был биологом из Швейцарии и занимался изучением гноя. По большому счёту открытие можно назвать случайным, и сам Мишер не понял, что именно он открыл. Он назвал своё открытие нуклеином. А позже нуклеиновой кислотой, когда у неё обнаружились кислотные свойства.
Назначение этой кислоты было загадочно и неизвестно, хотя некоторые учёные уже поднимали вопрос о наследственности и существовании механизмов наследования. Современное представление о том из чего состоит цепь ДНК, было сформировано Д. Уотсоном и Ф. Криком в 1953 году. Несколько ранее, в середине тридцатых годов советские ученые А.Р. Кезеля и А.Н. Белозерский доказали, что ДНК встречается у всех живых видов. До их работы считалось, что эта молекула присутствует только в организме животных видов, а в растениях присутствует только РНК.
Тот факт, что дезоксирибонуклеиновая кислота является механизмом сохранения наследственной информации, был открыт только в 1944 году группой исследователей из Освальда. Так, совокупными усильями разных учёных мира была приоткрыта тайна эволюционного процесса и механизмов в его основе.
История открытия ДНК
Строение и функции ДНК были открыты Джеймсом Уотсоном и Френсисом Криком, им даже была вручена Нобелевская премия в 1962 году.
Но впервые обнаружил нуклеиновые кислоты швейцарский ученый Фридрих Иоганн Мишер, работавший в Германии. В 1869 году он изучал животные клетки – лейкоциты. Для их получения использовал повязки с гноем, достававшиеся ему из больниц. Из гноя Мишер вымывал лейкоциты, а из них выделял белок. В ходе этих исследований ученому удалось установить, что в лейкоцитах кроме белков имеется еще что-то, какое-то неизвестное на тот момент вещество. Оно представляло собой нитевидный или хлопьевидный осадок, который выделялся, если создать кислую среду. Осадок сразу растворялся при добавлении щелочи.
Ученый с помощью микроскопа обнаружил, что при отмывании лейкоцитов с помощью соляной кислоты от клеток остаются ядра. Тогда он сделал заключение, что в ядре есть неизвестное вещество, названное им нуклеином (слово nucleus в переводе означает ядро).
Проведя химический анализ, Мишер выяснил, что новое вещество в своем составе имеет углерод, водород, кислород и фосфор. В то время фосфорорганических соединений было известно немного, поэтому Фридрих решил, что обнаружил новый класс соединений, находящихся в ядре клетки.
Таким образом, в XIX веке было открыто существование нуклеиновых кислот. Однако в то время никто не мог даже подумать о том, какая важная роль им принадлежит.
Заключение
Строение ДНК позволяет ей являться хранителем генетической информации, а также передавать ее следующим поколениям. Какие есть особенности у этой молекулы?
- Стабильность. Это возможно благодаря гликозидным, водородным и фосфодиэфирным связям, а также механизму репарации индуцированных и спонтанных повреждений.
- Возможность репликации. Этот механизм позволяет в соматических клетках сохранять диплоидное число хромосом.
- Существование генетического кода. При помощи процессов трансляции и транскрипции последовательность оснований, находящихся в ДНК, преобразуется в последовательность аминокислот, находящихся в полипептидной цепи.
- Способность к генетической рекомбинации. При этом образуются новые сочетания генов, которые сцеплены между собой.
Таким образом, строение и функции ДНК позволяют ей играть неоценимую роль в организмах живых существ. Известно, что длина 46-ти молекул ДНК, находящихся в каждой клетке человека, равна почти 2 м, а число нуклеотидных пар составляет 3,2 млрд.