Hbv, днк количественно [реал-тайм пцр]

ВВЕДЕНИЕ

С середины 80-х годов ведется разработка методов выявления гипервариабельных последовательностей ДНК человека, так называемая геномная «дактилоскопия». В отличие от традиционных средств, используемых для установления родства (определение группы крови, анализ белковых изоформ и др.), которые не могут обеспечить высокую степень индивидуальности набора признаков, профили ДНК практически полностью специфичны для каждого человека, в силу чего представляют собой хороший инструмент для идентификации личности. Молекулярно-генетический идентификационный анализ на сегодняшний день является одним из наиболее доказательных методов исследования биологического материала в судебной медицине.

Ведущие специалисты в области молекулярно-генетических исследований – M. M. Holland and T. J. Parsons (The Armed Forces DNA Identification Laboratory Office of the Armed Forces Medical Examiner the Armed Forces Institute of Pathology Rockville, Maryland United States of America, ) на основе анализа мировой практики судебной молекулярно-генетичекой экспертизы констатируют: «Профилирование ДНК является наиболее мощным и достоверным методом идентификации после дактилоскопии, поскольку большинство профилей мультилокусов ДНК-RFLP или AmpFLP позволяют надежно идентифицировать происхождение объекта, делая маркеры яДНК золотым стандартом или наилучшим методом в судебной экспертизе.

ДНК-типирующие системы на основе ПЦР и RFLP выдержали испытание научного и юридического сообщества. Хотя надежность и приемлемость этих процедур все еще критикуется в судах по рутинным причинам (курсив наш)теперь уже есть концептуальное принятие этих двух методологий, использующих исследование профилей яДНК, а также их статистические веса. Используя эти методы, криминалистические лаборатории в настоящее время имеют способность идентифицировать биологические вещественные доказательства с большой точностью и надежностью. Анализ митохондриальной ДНК играет ключевую роль в дополнении этой способности».

ДНК-идентификация человека основана на выявлении молекулярно-генетических индивидуализирующих признаков и их анализе в исследуемых и сравниваемых объектах напрямую или опосредованно – через установление кровного родства . При этом следует отметить, что дискриминирующая способность непрямой ДНК-идентификации существенно ниже, чем прямой. Поэтому считаем необходимым более подробно рассмотреть вопрос идентификации личности через установление кровного родства.

Строение ДНК

ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:

  • азотистого основания;
  • пятиуглеродного сахара (пентозы);
  • фосфатной группы (рисунок 1).

При этом,  фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка,  а  органическое основание — к 1′-атому.

Основания в ДНК бывают двух типов:

  • Пуриновые: аденин ( А ) и гуанин (G);
  • Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),

Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен  2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН),  а  в РНК — рибозой, имеющей 2 гидроксильные группы (OH).

Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец),  а  на другом — 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура  ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется  водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек,  закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК. Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет  8 см,  а в форме суперспирали укладывается в 5 нм.

 Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т  или (А + G)/(C + Т)=1.
  2. В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т):  А +C= G + Т или (А +C)/(G + Т)= 1
  3. Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1;  Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.

MyGenetics

От 4 900 рублей

Новосибирская компания MyGenetics развивается с помощью партнёрской сети. К ней присоединяются желающие заниматься продажами ДНК-тестов и других услуг компании в регионах России и в странах СНГ. На сегодняшний день там одни из самых низких цен на минимальные исследования генотипов. Например, исследование семи генов, в результате которого клиент узнает свой оптимальный вид диеты и уровень метаболизма кофе, стоит 4 900 рублей, то же самое, но с информацией о реакции организма на факторы и продукты среды — 9 900 рублей. Самое полное исследование (28 генов) стоит 14 900 рублей, оно включает расширенную информацию о пищеварении и подходящих видах спорта. Если вы захотите получить результаты в виде книги с глянцевой бумагой, надо будет заплатить вдвое больше. Хотя в таком случае в стоимость включены консультации генетика и диетолога.

Но тем, кому интересно происхождение, стоит обратить внимание на другие сервисы, здесь эта инфомация не включена. 

Фотография: Shutterstock

Функции ДНК и аминокислот

Основные функции ДНК

К функциям ДНК относят:

  1. Вхождение в состав хромосом.
  2. Хранение наследственной информации обо всех признаках организма и первичной структуре белков. Первичную структуру белков называют линейной, поскольку она состоит из соединенных друг с другом пептидной связью аминокислот.
  3. Способность к репликации (удвоение). Процесс удвоения осуществляется в интерфазе до процесса деления. Хромосомы состоят из двух хроматид – в будущем они станут дочерними хромосомами. Процесс удвоения важен потому, что после эти дочерние клетки получат наследственную информацию в одинаковом объеме.

Свойства и функции аминокислот

Есть множество азотосодержащих соединений, обладающих двойственной функций. Кроме нуклеиновых кислот нужно выделить аминокислоты.

Определение 4

Аминокислоты – органические соединения, в состав которых входят аминогруппы (- NH2) и карбоксильные группы (- COOH).

Несмотря на то, что в клетках и живых тканях можно встретить больше 300 различных аминокислот, всего 20 из них являются звеньями в процессе строительства пептидов и белков, которые создаются на ДНК-матрице. Такие аминокислоты входят в состав ДНК и называются белковыми.

В последовательности нуклеотидов ДНК или соответствующего гена закодирована последовательность размещения вышеупомянутых аминокислот внутри белка. Другие аминокислоты могут встречаться как в виде свободных молекул, так и в связанном виде.

Есть аминокислоты, которые можно найти только в определенных организмах, а некоторые – только в одном организме. Почти все растения и микроорганизмы, в отличие от животных и людей, синтезируют нужные аминокислоты. Люди и животные не могут синтезировать незаменимые аминокислоты – они получают их только в процессе приема пищи.

Аминокислоты крайне важны для организма, поскольку принимают участие в обмене белков и углеводов, образовании важных органических соединений

В качестве примера – пуриновые и пиримидиновые основания, которые являются важной частью аминокислот

Замечание 1

Аминокислоты можно найти в составе гормонов, токсинов, алкалоидов, антибиотиков, пигментов и др. А еще очень много аминокислот выступает посредниками при передаче нервных импульсов.

Классификация аминокислот

Есть несколько признаков, по которым классифицируют все аминокислоты:

  • взаимное расположения аминогрупп и карбоксильных групп;
  • количество функциональных групп. Здесь выделяют кислые, нейтральные и основные аминокислоты;
  • характер углеводного радикала. В этом случае можно выделить алифатические, ароматические, гетероциклические аминокислоты.

Названия аминокислот, исходя из систематической номенклатуры, получаются, если к названию соответствующей кислоты добавляется приставка амино- и указывается место размещения аминогруппы по отношению к карбоксильной группе.

Есть еще одни вариант называния аминокислоты: обычное название карбоновой кислоты озвучивается вместе с приставкой амино-, а после обозначается буквой греческого алфавита.

Среди наиболее важных аминокислот стоит назвать валин, глицин, лейцин, аланин.

Подводя итоги, отметим, что аминокислоты – это кристаллические вещества, обладающие высокой температурой плавления. Они практически ничем не отличаются от индивидуальных аминокислот – по этой причине они не свойственны многим живым организмам.

Замечание 2

Многие аминокислоты сладкие на вкус.

Важно обозначить, что аминокислоты растворяются в воде, а в органических растворителях – нет. Учитывая этот факт, можно сказать, что аминокислоты похожи на неорганические соединения

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

«Мой ген»

От 30 тысяч рублей

Компания «Мой ген» первой в России занялась массовой расшифровкой генома. Она основана в 2007 году в Екатеринбурге. Сейчас у неё есть представительства в Москве, Санкт-Петербурге и в Перми.

Тем, кто хочет узнать о своих корнях поподробнее, надо брать пакет «Этно». За те же 30 тысяч рублей вы получите этногенетическую карту. На 15 тысяч рублей дороже стоит общее исследование, в котором будет объединена информация о происхождении и о здоровье.

После того как пробирку со слюной передадут в лабораторию, нужно будет подождать до получения результатов шесть-восемь недель.

Итак, как это работает?

Лучшая метафора, иллюстрирующая функцию хранения информации в ДНК, — это энциклопедия рецептов.

Многие люди бережно хранят свои семейные книги рецептов, доставшиеся им от предков. Эти рецепты иногда дополняются или корректируются. А затем передаются детям. Так происходит из поколения в поколение. Этот процесс сохраняет, хотя и с небольшими изменениями, важнейшие семейные кулинарные традиции.

В принципе, полный набор генетической информации в организме, или геном, ничем не отличается от сборника семейных рецептов. Геном использует ДНК вместо бумаги, чтобы передать по наследству драгоценную интеллектуальную собственность семьи. Наш геном очень похож в этом смысле на многотомную семейную энциклопедию. Ген предоставляет клетке инструкции и информацию, приказывая ей производить определенные белки в определенных тканях, в определенное время и при определенных условиях.

А теперь представьте свою семейную коллекцию кулинарных книг, состоящую из 23 томов. В которых, в общей сложности, содержится около 20 000 рецептов. Это приблизительное количество генов в геноме человека. Мы храним большую часть нашей ДНК в 23 парах хромосом. В общей сложности их 46 в каждой клетке. И каждая хромосома состоит из длинной цепочки ДНК, в которой закодирована генетическая информация.

ВОЗМОЖНОСТИ МЕТОДА

Посредством непрямой ДНК-идентификации решаются вопросы принадлежности исследуемого субъекта к определенному семейному кругу. Субъектами исследования могут быть:

  • спорный ребенок;
  • спорный отец;
  • спорная мать;
  • лицо, которое не способно сообщить о себе сведения, либо скрывающее их;
  • неопознанный труп или его останки.

Основными идентификационными признаками являются аллельные состояния исследуемых локусов хромосомной (ядерной) ДНК (яДНК). При типировании ДНК в каждом локусе могут быть выявлены либо один (гомозиготная форма), либо два аллеля (гетерозиготная форма). Представим, что для определенного субъекта было типировано n локусов. Тогда можно построить идентификационный вектор – профиль ДНК для данного субъекта в виде набора аллельных состояний в каждом локусе. Определенное сочетание аллелей в одном локусе называется локальным генотипом , поэтому профиль ДНК представляет собой набор локальных генотипов. В случае гомозиготного генотипа ребенок наследует один и тот же аллель от матери и отца, при гетерозиготном – два разных аллеля, один от матери, другой от отца. Характеристика профиля ДНК по нескольким локусам, то есть сочетание нескольких наборов комбинаций аллелей, обеспечивает высокую индивидуализирующую способность метода. Степень индивидуальности профилей ДНК определяется количеством исследованных локусов и частотой встречаемости выявленных аллелей. В настоящее время для установления профилей ДНК в судебно-медицинских исследованиях используются тест-системы диагностики до 16 локусов с потенциалом индивидуализации до 5,46*10-18.

ДНК-анализом, теоретически (исходя из теории вероятностей), не обеспечивается 100% доказательства кровного родства или идентичности аллельных профилей исследуемого объекта и сравниваемого субъекта. Однако, в практике, на современном уровне молекулярно-генетических исследований, возможно установление количественных и качественных характеристик совокупности генетических признаков, отличающих конкретного человека от других людей в определенной группе населения, что позволяет категорически судить об идентификации личности или о происхождении биологического следа от конкретного лица.

Как проводится анализ ДНК на отцовство?

Стандартный материал для проведения данного анализа – это буккальный эпителий, то есть эпителий, который находится в ротовой полости человека. Хотя для проведения ДНК анализа пригоден практически любой биологический материал, содержащий в себе клетки человеческого организма. Буккальный мазок является самым быстрым, безболезненным и доступным для правильного самостоятельного забора способом получения ДНК материала.

Дезоксирибонуклеиновая кислота или ДНК – генетический материал, содержащийся в клетках нашего тела и состоящий наполовину из ДНК матери и на вторую половину — из ДНК отца. ДНК тест представляет собой глубокий анализ генетических данных матери, ребенка и предполагаемого отца.

ДНК тест на отцовство проводится путем анализа ПРЦ (полимеразной цепной реакции). Последний основан на принципах молекулярной биологии, выполняется с применением особых ферментов, многократно увеличивающих фрагменты ДНК (локусы), позволяя тем самым проводить точную сверку биологических материалов.

Точность такого анализа максимально высокая, именно потому, на данный момент это основной метод установления биологического отцовства. Качественно проведенный ПРЦ анализ не допускает двусмысленного трактования. При его использовании анализы проведенные в двух различных лабораториях в различное время обязательно совпадут!

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3). При этом аденин образует пару только с тимином,  а  гуанин — с цитозином. Пара оснований  А—Т  стабилизируется двумя водородными связями,  а  пара G—С — тремя.

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы»,  а  пары оснований  А—Т  и G—С — ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′. В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева,  а  3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.

Расшифровка результатов ДНК

Взять материал для анализа ДНК просто, а вот для расшифровки нужно высокотехнологичное оборудование. Специалистам предстоит изучить микроскопические структуры из миллионов элементов и установить их последовательность. Такой процесс называется секвенированием ДНК.

В лаборатории MyGenetics анализы проводят методом Real Time PCR — полимеразной цепной реакции в режиме реального времени. В ходе процедуры создаются миллионы копий определенных участков одной молекулы, что позволяет многократно увеличить этот отрезок и детально изучить его. Такой метод помогает быстро выделить ДНК и дает наиболее точный результат.

Специалисты лаборатории обрабатывают результат генетического анализа и составляют персональный ДНК-отчет с подробной интерпретацией результатов и конкретными рекомендациями.

История развития

Истоки

Основы классической генетики были заложены в середине XIX века благодаря экспериментам чешского-австрийского биолога Грегора Менделя. Открытые им на примере растений принципы передачи наследственных признаков от родительских организмов к их потомкам в 1865 году, к сожалению, не получили должного внимания у современников, и только в 1900 году Хуго де Фриз и другие европейские ученые независимо друг от друга «переоткрыли» законы наследственности.

Параллельно с этим шел процесс формирования знаний о ДНК. Так, в 1869 году швейцарский биолог Фридрих Мишер открыл факт существования макромолекулы, а в 1910 году американский биолог Томас Хант Морган обнаружил на основе характера наследования мутаций у дрозофил, что гены расположены линейно на хромосомах и образуют группы сцепления. В 1953 году было сделано важнейшее открытие — американец Джон Уотсон и британец Фрэнсис Крик установили молекулярную структуру ДНК.

На подъеме

К концу 1960-х годов генетика активно развивалась, а ее важными объектами стали вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов, а в 1970-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.

Генная инженерия как отдельное направление исследовательской работы зародилась в США в 1972 году, когда в Стэнфордском университете ученые Пол Берг, Стэнли Норман Коэн, Герберт Бойер и их научная группа внедрили новый ген в бактерию кишечной палочки (E. coli), то есть создали первую рекомбинантную ДНК.

Техника ПЦР была впервые разработана в 1980-х годах американским биохимиком Кэри Маллисом. Будущий лауреат Нобелевской премии по химии (1993 года), обнаружил в специфический фермент — ДНК-полимеразу, который участвует в репликации ДНК. Этот фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их в качестве шаблона для последующего копирования генетической информации.

Новая эра

В 1996 году методом пересадки ядра соматической клетки в цитоплазму яйцеклетки на свет появилось первое клонированное млекопитающее — овца Долли. Это событие стало революционным в истории развития генной инженерии, потому что впервые стало возможным серьезно говорить о создании клонов и выращивании живых организмов на основе молекул.

Сферы применения

Криминалисты первыми оценили все преимущества, тогда ещё молодой и не развитой методики ДНК-тестирования. И, тут не обошлось дело без случайного совпадения. Открытие ДНК-идентификации по аналогии с идентификацией по отпечаткам пальцев, открыл британский ученый Алек Джеффрис 10 сентября 1984 года. Он занимался изучением отклонений в хромосомной ДНК с помощью её рентгеновских снимков, а заметил, что нуклеотиды имеют уникальную последовательность и у всех она различается.

Открытие дало старт тому многообразию применения анализа ДНК, что есть на сегодняшний день – мы можем наблюдать, как невероятная технология из фантастики становится обыденной реальностью. Удивительно, что Алек Джеффрис так и не удостоился нобелевской премии. Он всё еще живет в Великобритании и ему 69 лет.

В наши дни с помощью теста ДНК можно:

  •  Установить личность человека по мельчайшим его следам: по бокалу, из которого он пил; по капле крови засохшей на рубашке и т.д.
  •  Установить отцовство.
  •  Установить родство и его степень между неограниченным количеством людей (без изучения ДНК отцов и матерей).
  •  Выявить инфекцию или вирус до возникновения первых симптомов заболевания.
  •  Составить наиболее подходящий организму рацион питания, исходя из его врожденных индивидуальных особенностей.
  •  Предсказать предрасположенность и противопоказания к спорту и физическим нагрузкам.
  •  Узнать, есть ли в геноме следы наследственных заболеваний и предрасположенности к ним.
  •  Выяснить пол ребенка еще до его рождения, а так же, резус фактор и генетические сбои (если они имеются).

И это только из доступного широкой общественности спектра возможных применений. В перспективе ученые-генетики надеются найти секрет если не вечной жизни, то разработать метод многократно её продлить.

Путь от цепочки к хромосоме

У всех живых организмов клеточная структура и эти клетки содержат внутри себя ядро – такие клетки называются эукариоты. У бактерий и архей (древних одноклеточных организмов) такого ядра нет. Так же ядра в клетке нет у вирусов и вироидов ( инфекционных агентов, вызывающих болезни растений), но считать ли их живыми до сих пор вопрос дискуссионный.

Ядра клеток содержат в себе структуры, хранящие наследственную информацию – хромосомы. А вот сама хромосома и содержит внутри себя спиральную молекулу дезоксирибонуклеиновой кислоты, которая осуществляет функцию хранения наследственной информации.

Можно ли повлиять на результат

Даже теоретически подделать результаты ДНК анализа очень и очень не просто. Если допустить, что кому-то удалось подкупить сотрудника лаборатории, то совершить такую подмену можно только в сговоре со всему участниками исследования – вся процедура анализа фиксирует документально и на фото, и проходит под надзором уполномоченного лица.

Если, всё-таки возникли подозрения в недостоверности результатов анализа, всегда можно потребовать повторное исследование в той же или в другой лаборатории. В том случае, если подмена результатов будет подтверждена, виновники таковой не только понесут уголовную ответственность, но и должны будут компенсировать все сопутствующие проверке затраты.

По самому невероятному сценарию, учёнными Израиля тестируется методика синтеза искусственной цепочки ДНК, но это еще не готовая и очень дорогая технология. И для её применения необходимо иметь доступ к банку всех исследованных генов, чего нет у обычного медицинского учреждения.

В связи с этим, и по причине высокой точности результатов исследования ДНК, тестирование является единственным способом доказать отцовство, или его отсутствие в суде. На данный момент государство не предоставляет бесплатную возможность провести анализ на отцовство, но в тех случаях, когда в ходе судебных разбирательств суд сам принял решение о необходимости проведения исследования, его оплата входит в судебные издержки и покрывается из областного бюджета.

Информационная РНК (иРНК)

Почти все РНК синтезируются на ДНК в процессе транскрипции. Однако часто транскрипция упоминается как синтез именно информационной РНК (иРНК). Связано это с тем, что последовательность нуклеотидов иРНК в последствии определит последовательность аминокислот синтезируемого в процессе трансляции белка.

Перед транскрипцией нити ДНК расплетаются, и на одной из них с помощью комплекса белков-ферментов синтезируется РНК по принципу комплементарности, так же как это происходит при репликации ДНК. Только напротив аденина ДНК к молекуле РНК присоединяется нуклеотид, содержащий урацил, а не тимин.

На самом деле на ДНК синтезируется не готовая информационная РНК, а ее предшественник — пре-иРНК. Предшественник содержит участки последовательности нуклеотидов, которые не кодируют белок и которые после синтеза пре-иРНК вырезаются при участии малых ядерных и ядрышковых РНК («дополнительные» типы РНК). Эти удаляющиеся участки называются интронами. Остающиеся части иРНК называются экзонами. После удаления интронов экзоны сшиваются между собой. Процесс удаления интронов и сшивания экзонов называется сплайсингом. Усложняющей жизнь особенностью является то, что можно вырезать интроны по-разному, в результате получатся разные готовые иРНК, которые будут служить матрицами для разных белков. Таким образом, вроде бы один ген ДНК может играть роль нескольких генов.

Следует отметить, что у прокариотических организмов сплайсинга не происходит. Обычно их иРНК сразу после синтеза на ДНК готова к трансляции. Бывает, что пока конец молекулы иРНК еще транскрибируется, на ее начале уже сидят рибосомы, синтезирующие белок.

После того как пре-иРНК созревает в информационную РНК и оказывается вне ядра, она становится матрицей для синтеза полипептида. При этом на нее «насаживаются» рибосомы (не сразу, какая-то оказывается первой, другая — второй и т. д.). Каждая синтезирует свою копию белка, т. е. на одной молекуле РНК могут синтезироваться сразу несколько одинаковых белковых молекул (понятно, что каждая будет находиться на своей стадии синтеза).

Рибосома, передвигаясь от начала иРНК к ее концу, считывает по три нуклеотида (хотя вмещает шесть, т. е. два кодона) и присоединяет соответствующую транспортную РНК (имеющую соответствующий кодону антикодон), к которой присоединена соответствующая аминокислота. После этого с помощью активного центра рибосомы ранее синтезированная часть полипептида, соединенная с предшествующей тРНК, как-бы «пересаживается» (образуется пептидная связь) на аминокислоту, прикрепленную к только что пришедшей тРНК. Таким образом, молекула белка постепенно увеличивается.

Когда молекула информационной РНК становится не нужна, клетка ее разрушает.

Есть ли практическое применение информации из ДНК?

Конечно есть! Полиция, например, в наши дни часто использует анализ ДНК для раскрытия давно забытых преступлений. Специалисты по генеалогии используют эту молекулу для составления и подтверждения генеалогического древа, которое может иметь возраст в несколько веков. Историки часто используют ДНК для идентификации останков погибших солдат. Врачи тоже часто используют новые лекарства и методы лечения. В том числе для борьбы с раком и коронавирусом. Они разрабатываются в процессе молекулярно-генетических манипуляций. А специалисты по фертильности помогают бесплодным парам заводить биологически родных детей.

Понимание природы ДНК и того, как она функционирует, не только ведет к разработке новых технологий. Одновременно оно усиливает наше восхищение этой удивительной молекулой жизни…

Синтез РНК

Нуклеотиды (из которых формируются гены) подразделяются на 4 образующих элемента: аденин, тимин, гуанин и цитозин, которые содержат остатки фосфора, пептозы и азотистого основания. В цепочках ДНК эти нуклеотиды располагаются параллельно друг другу строгими парами: аденин только с тимином, а гуанин только с цитозином.

Необходимо подчеркнуть, что молекула дезоксирибонуклеиновой кислоты  ни целиком, ни частично не может (или не должна) покинуть пределов ядра. РНК выступает в роли копии участка цепи генома, которая способна покинуть ядро, попасть в саму клетку и воздействовать на идущие в ней процессы. И происходит это удивительным образом:

  •  Спираль генов раскручивается на одном из своих участков и формирует развернутые нити обоих цепочек генов.
  •  К развернутому участку подходит специальный фермент-строитель и поверх этого участка синтезирует копию.
  •  У копии есть одно ключевое отличие от оригинальной структуры нуклеотидов: тимин во всех парах ней заменён на урацил. Это и позволяет ей покидать пространство ядра клетки.

Функции РНК

В основе функций рибонуклеиновой кислоты лежат три различных вида РНК.

Информационная передает генетическую информацию от ДНК в цитоплазму ядра. Ее еще называют матричной. Это незамкнутая цепь, синтезирующаяся в ядре при помощи фермента РНК-полимеразы. Несмотря на то что в молекуле ее процентное содержание чрезвычайно низкое ( от трех до пяти процентов клетки), на ней лежит важнейшая функция — являться матрицей для синтеза белков, информируя об их структуре с молекул ДНК. Один белок кодируется одной специфичной ДНК, поэтому их числовое значение равное.

Рибосомная в основном состоит из цитоплазматических гранул — рибосом. Р-РНК синтезируются в ядре. На их долю приходится примерно восемьдесят процентов всей клетки. Этот вид обладает сложной структурой, образовывая петли на комплементарных частях, что ведет к молекулярной самоорганизации в сложное тело. Среди них имеются три типа у прокариот, и четыре — у эукариот.

Транспортная действует в роли «адаптера», выстраивая в соответствующем порядке аминокислоты полипептидной цепи. В среднем, она состоит из восьмидесяти нуклеотидов. В клетке их содержится, как правило, почти пятнадцать процентов. Она предназначена переносить аминокислоты туда, где белок синтезируется. В клетке насчитывается от двадцати до шестидесяти типов транспортной РНК. У них всех — сходная организация в пространстве. Они приобретают структуру, которую называют клеверным листом.

ДНК экспертиза: определение и описание

ДНК экспертиза это выявление индивидуальных особенностей организма человека путем расшифровки его генетического кода. На сегодняшний день на рынке услуг по ДНК тестированию предлагается несколько основных тестов, которые широко применяются в медицине, спорте и криминалистике:

  •  Тест на установление отцовства и родства, как такового.
  •  Предрасположенности и противопоказания в спорте.
  •  Диагностика вирусных и инфекционных заболеваний на ранней инкубационной стадии позволяет определить наличие инфекции даже при наличии всего одной молекулы в образце.(когда болезнь еще ни как себя не проявляет и выявить её иным способом не возможно).
  •  Диагностика наследственных заболеваний, предрасположенности к заболеваниям и выявление аллергических реакций.
  •  Подробный анализ национальности и всех этносов в роду.
  •  Определение личности человека по ДНК

У каждого ли живого существа она есть?

Язык генетики одинаков для всех форм жизни. Ген из любой клетки любого живого существа может быть скопирован, передан и понят любым другим живым существом. Которое может произвести тот же самый белок.

Например, человеческий инсулин сегодня может производиться микробами, модифицированными методами генной инженерии с использованием рецепта человеческой ДНК. Работает это примерно так. Копия гена человеческого инсулина передается микробам. Эти микробы собирают совещание, где изучают рецепт гена человеческого инсулина. И по полученным чертежам производят человеческий инсулин. Хотя сами микробы не имеют крови и, тем более, сахара в крови. И не используют инсулин. Это просто работа и не более того. Точно так же большинство твердых сыров в настоящее время производится с использованием химозина (фермента свертывания молока), генерируемого генетически модифицированными микробами.

ЗАКЛЮЧЕНИЕ

  1. Конечной целью молекулярно-генетических идентификационных исследований следует считать достижение крайних уровней доказательства гипотез о кровном родстве, принадлежности трупа (останков) или биологического объекта конкретному лицу.
  2. В единичных случаях идентификации и при исследовании групп, не ограниченных численным и личностным составом, оценку результатов молекулярно-генетических исследований предлагается производить по методике, изложенной в таблицах 3, 4.
  3. При исследованиях в закрытых группах оценку результатов рекомендуется производить из расчета значения LR не менее чем на порядок превышающего численность группы.
  4. В заключении (акте) судебно-медицинского эксперта-генетика раздел «Исследование» должен быть дополнен подразделом «Оценка результатов».
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector